
Chapter 11

• 11.1 Gibbs sampler
• 11.2 Metropolis and Metropolis-Hastings
• 11.3 Using Gibbs and Metropolis as building blocks
• 11.4 Inference and assessing convergence (important)

• potential scale reduction R̂ (R-hat)
• 11.5 Effective number of simulation draws (important)

• effective sample size (ESS / Seff)
• 11.6 Example: hierarchical normal model (quick glance)
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Chapter 11 demos

• demo11 1: Gibbs sampling
• demo11 2: Metropolis sampling
• demo11 3: Convergence of Markov chain
• demo11 4: split-R̂ and effective sample size (ESS or Seff)
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It’s all about expectations (reminder)

Ep(θ|y)[f (θ)] =

∫
f (θ)p(θ | y)dθ,

where p(θ | y) =
p(y | θ)p(θ)∫
p(y | θ)p(θ)dθ

We can easily evaluate p(y | θ)p(θ) for any θ, but the integral∫
p(y | θ)p(θ)dθ is usually difficult.

We can use the unnormalized posterior q(θ | y) = p(y | θ)p(θ),
for example, in
• Grid (equal spacing) evaluation with self-normalization

Ep(θ|y)[f (θ)] ≈
∑S

s=1
[
f (θ(s))q(θ(s) | y)

]∑S
s=1 q(θ(s) | y)

• Monte Carlo methods which can sample from p(θ(s) | y)
using only q(θ(s) | y)

Ep(θ|y)[f (θ)] ≈ 1
S

S∑
s=1

f (θ(s))
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Monte Carlo

• Monte Carlo methods we have discussed so far
• Inverse CDF works for 1D
• Analytic transformations work for only certain distributions
• Factorization works only for certain joint distributions
• Grid evaluation and sampling works in a few dimensions
• Rejection sampling works mostly in 1D (truncation is a

special case)
• Importance sampling is reliable only in special cases

• What to do in high dimensions?
• Markov chain Monte Carlo (Ch 11-12)
• Laplace, Variational*, EP* (Ch 4,13*)
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Markov chain

• Andrey Markov proved weak law of large numbers and
central limit theorem for certain dependent-random
sequences, which were later named Markov chains
• CLT saying the sum / mean converges towards normal if the

variance is finite (we come back to this in the end of the
course)

• The probability of each event depends only on the state
attained in the previous event (or finite number of previous
events)
• Markov’s one example was the sequence of letters in

Pushkin’s novel “Yevgeniy Onegin”

• Deep learning language models are super big Markov
models
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Markov chain

• Example of a simple Markov chain
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Markov chain Monte Carlo (MCMC)

• Produce draws θ(t), given θ(t−1), from a Markov chain,
which has been constructed so that its equilibrium
distribution is p(θ | y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the α% of time where α%

posterior mass is
+ central limit theorem holds for expectations
- draws are dependent
- construction of efficient Markov chains is not always easy

7 / 49



Markov chain Monte Carlo (MCMC)

• Produce draws θ(t), given θ(t−1), from a Markov chain,
which has been constructed so that its equilibrium
distribution is p(θ | y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain

+ chain goes where most of the posterior mass is
+ asymptotically chain spends the α% of time where α%

posterior mass is
+ central limit theorem holds for expectations
- draws are dependent
- construction of efficient Markov chains is not always easy

7 / 49



Markov chain Monte Carlo (MCMC)

• Produce draws θ(t), given θ(t−1), from a Markov chain,
which has been constructed so that its equilibrium
distribution is p(θ | y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the α% of time where α%

posterior mass is

+ central limit theorem holds for expectations
- draws are dependent
- construction of efficient Markov chains is not always easy

7 / 49



Markov chain Monte Carlo (MCMC)

• Produce draws θ(t), given θ(t−1), from a Markov chain,
which has been constructed so that its equilibrium
distribution is p(θ | y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the α% of time where α%

posterior mass is
+ central limit theorem holds for expectations

- draws are dependent
- construction of efficient Markov chains is not always easy

7 / 49



Markov chain Monte Carlo (MCMC)

• Produce draws θ(t), given θ(t−1), from a Markov chain,
which has been constructed so that its equilibrium
distribution is p(θ | y)

+ generic
+ combine sequence of easier Monte Carlo draws to form a

Markov chain
+ chain goes where most of the posterior mass is
+ asymptotically chain spends the α% of time where α%

posterior mass is
+ central limit theorem holds for expectations
- draws are dependent
- construction of efficient Markov chains is not always easy

7 / 49



Markov chain

• Set of random variables θ1, θ2, . . ., so that with all values of
t , θt depends only on the previous θ(t−1)

p(θt | θ1, . . . ,θ(t−1)) = p(θt | θ(t−1))

• Chain has to be initialized with some starting point θ0

• Transition distribution Tt (θ
t | θt−1) (may depend on t)

• by choosing a suitable transition distribution, the stationary
distribution of Markov chain is p(θ | y)
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Gibbs sampling

• Alternate sampling from 1D conditional distributions
• e.g. normal distribution, sample alternating from

p(µ | σ2, y) and p(σ2 | µ, y)

• 1D is easy even if no conjugate prior and analytic posterior
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Gibbs sampling
• Alternate sampling from 1D conditional distributions
• demo11 1
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• Basic algorithm

sample θt
j from p(θj | θt−1

−j , y),

where θt−1
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Gibbs sampling
• With conditionally conjugate priors, the sampling from the

conditional distributions is easy for wide range of models
• BUGS/WinBUGS/OpenBUGS/JAGS

• No algorithm parameters to tune
(cf. proposal distribution in Metropolis algorithm)
• For not so easy conditionals, use e.g. inverse-CDF
• Several parameters can be updated in blocks (blocking)
• Slow if parameters are highly dependent in the posterior

• demo11 1 continues
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Conditional vs joint

• How about sampling θ jointly?
• e.g. it is easy to sample from multivariate normal

• Can we use that to form a Markov chain?
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Metropolis algorithm

• Algorithm
1. starting point θ0

2. t = 1,2, . . .
(a) pick a proposal θ∗ from the proposal distribution Jt(θ

∗ | θt−1).
Proposal distribution has to be symmetric, i.e.
Jt(θa | θb) = Jt(θb | θa), for all θa, θb

(b) calculate acceptance ratio

r =
p(θ∗ | y)

p(θt−1 | y)(c) set

θt =

{
θ∗ with probability min(r , 1)
θt−1 otherwise

ie, if p(θ∗ | y) > p(θt−1 | y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous

• step c is executed by generating a random number from
U(0,1)

• p(θ∗ | y) and p(θt−1 | y) have the same normalization terms,
and thus instead of p(· | y), unnormalized q(· | y) can be
used, as the normalization terms cancel out!
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θt−1 otherwise

ie, if p(θ∗ | y) > p(θt−1 | y) accept the proposal always
and otherwise accept the proposal with probability r

• rejection of a proposal increments the time t also by one
ie, the new state is the same as previous

• step c is executed by generating a random number from
U(0,1)

• p(θ∗ | y) and p(θt−1 | y) have the same normalization terms,
and thus instead of p(· | y), unnormalized q(· | y) can be
used, as the normalization terms cancel out!
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Metropolis algorithm

• Example: one bivariate observation (y1, y2)
• bivariate normal distribution with unknown mean and known

covariance (
θ1
θ2

)∣∣∣∣ y ∼ N

((
y1
y2

)
,

(
1 ρ
ρ 1

))
• proposal distribution Jt (θ

∗ | θt−1) = N(θ∗ | θt−1, σ2
p)

• demo11 2

• More examples https://chi-feng.github.io/mcmc-demo/
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Why Metropolis algorithm works

• Intuitively more draws from the higher density areas as
jumps to higher density are always accepted and only some
of the jumps to the lower density are accepted

• Theoretically
1. Prove that simulated series is a Markov chain which has

unique stationary distribution
2. Prove that this stationary distribution is the desired target

distribution
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Why Metropolis algorithm works

1. Prove that simulated series is a Markov chain which has
unique stationary distribution

a) irreducible

= positive probability of eventually reaching any state from any
other state

b) aperiodic

= aperiodic (return times are not periodic)
- holds for a random walk on any proper distribution (except for

trivial exceptions)

c) recurrent / not transient

= probability to return to a state i is 1
- holds for a random walk on any proper distribution (except for

trivial exceptions)
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Why Metropolis algorithm works

2. Prove that this stationary distribution is the desired target
distribution p(θ | y)

- consider starting algorithm at time t − 1 with a draw
θt−1 ∼ p(θ | y)

- consider any two such points θa and θb drawn from p(θ | y)
and labeled so that p(θb | y) ≥ p(θa | y)

- the unconditional probability density of a transition from θa to
θb is

p(θt−1 = θa, θ
t = θb) = p(θa | y)Jt (θb | θa),

- the unconditional probability density of a transition from θb to
θa is

p(θt = θa, θ
t−1 = θb) = p(θb | y)Jt (θa | θb)

(
p(θa | y)

p(θb | y)

)

= p(θa | y)Jt (θa | θb),

which is the same as the probability of transition from θa to
θb, since we have required that Jt (· | ·) is symmetric

- since their joint distribution is symmetric, θt and θt−1 have
the same marginal distributions, and so p(θ | y) is the
stationary distribution of the Markov chain of θ
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Metropolis-Hastings algorithm

• Generalization of Metropolis algorithm for non-symmetric
proposal distributions
• acceptance ratio includes ratio of proposal distributions

r =
p(θ∗ | y)/Jt (θ

∗ | θt−1)

p(θt−1 | y)/Jt (θt−1 | θ∗)

=
p(θ∗ | y)Jt (θ

t−1 | θ∗)

p(θt−1 | y)Jt (θ∗ | θt−1)
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Metropolis-Hastings algorithm

• Ideal proposal distribution is the distribution itself
• J(θ∗ | θ) ≡ p(θ∗ | y) for all θ
• acceptance probability is 1
• independent draws
• not usually feasible

• Good proposal distribution resembles the target distribution
• if the shape of the target distribution is unknown, usually

normal or t distribution is used
• After the shape has been selected, it is important to select

the scale
• small scale
→ many steps accepted, but the chain moves slowly due to
small steps

• big scale
→ long steps proposed, but many of those rejected and
again chain moves slowly

• Generic rule for rejection rate is 60-90% (but depends on
dimensionality and a specific algorithm variation)
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Gibbs sampling

• Specific case of Metropolis-Hastings algorithm
• single updated (or blocked)
• proposal distribution is the conditional distribution
→ proposal and target distributions are same
→ acceptance probability is 1

20 / 49



Metropolis

• Usually doesn’t scale well to high dimensions
• if the shape doesn’t match the whole distribution, the

efficiency drops
• demo11 2
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Dynamic Hamiltonian Monte Carlo and NUTS

• Chapter 12 presents some more advanced methods
• Chapter 12 includes Hamiltonian Monte Carlo and NUTS,

which is one of the most efficient methods
• uses gradient information
• Hamiltonian dynamic simulation reduces random walk
• state-of-the-art MCMC used by most modern probabilistic

programming frameworks

• More next week

22 / 49



HMC / NUTS

Comparison of algorithms on highly correlated  
250-dimensional Gaussian distribution

•Do 1,000,000 draws with both Random Walk Metropolis and Gibbs, 
thinning by 1000

•Do 1,000 draws using Stan’s NUTS algorithm (no thinning)

•Do 1,000 independent draws (we can do this for multivariate normal)

from Hoffman & Gelman (2014) 23 / 49



Warm-up and convergence diagnostics

• Asymptotically chain spends the α% of time where α%
posterior mass is

• but in finite time the initial part of the chain may be
non-representative and lower error of the estimate can be
obtained by throwing it away
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Draws Steps of the sampler 90% HPD

• Warm-up = remove draws from the beginning of the chain
• warm-up may include also phase for adapting algorithm

parameters
• Convergence diagnostics

• Is the sample representative of the target distribution?
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MCMC draws are dependent

• Monte Carlo estimates still valid (central limit theorem holds)

Ep(θ|y)[f (θ)] ≈ 1
S

S∑
s=1

f (θ(s))

• Estimation of Monte Carlo error is more difficult
• evaluation of effective sample size
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Several chains
• Use of several chains make convergence diagnostics easier
• Start chains from different starting points – preferably

overdispersed
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No convergence

• Remove draws from the beginning of the chains and run
chains long enough so that it is not possible to distinguish
where each chain started and the chains are well mixed
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Several chains
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R̂: comparison of within and between variances of the
chains

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var hat plus = total variance estimate
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R̂: comparison of within and between variances of the
chains

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var hat plus = total variance estimate
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R̂

• M chains, each having N draws (with new R̂ notation)

• Within chains variance W

W =
1
M

M∑
m=1

s2
m, where s2

m =
1

N − 1

N∑
n=1

(θnm − θ̄.m)2

• Between chains variance B

B =
N

M − 1

M∑
m=1

(θ̄.m − θ̄..)2,

where θ̄.m =
1
N

N∑
n=1

θnm, θ̄.. =
1
M

M∑
m=1

θ̄.m

• B/N is variance of the means of the chains

• Estimate total variance var(θ | y) as a weighted mean of W
and B

v̂ar+(θ | y) =
N − 1

N
W +

1
N

B
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R̂

• Estimate total variance var(θ | y) as a weighted mean of W
and B

v̂ar+(θ | y) =
N − 1

N
W +

1
N

B

• this overestimates marginal posterior variance if the starting
points are overdispersed

• Given finite N, W underestimates marginal posterior
variance
• single chains have not yet visited all points in the distribution
• when N →∞, E(W )→ var(θ | y)

• As v̂ar+(θ | y) overestimates and W underestimates,
compute

R̂ =

√
v̂ar+

W

30 / 49
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R̂

• BDA3: R̂ aka potential scale reduction factor (PSRF)
• Compare means and variances of the chains

W = within chain variance estimate
var hat plus = total variance estimate

−4 −2 0 2 4

theta1

50  warmup,  50 post warmup iterations

var_hat_plus =  1.42
W =  0.53

−4 −2 0 2 4

theta1

Rhat =  1.64
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• Compare means and variances of the chains

W = within chain variance estimate
var hat plus = total variance estimate
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R̂

R̂ =

√
v̂ar+

W

• Estimates how much the scale of ψ could reduce if N →∞
• R̂ → 1, when N →∞
• if R̂ is big (e.g., R > 1.01), keep sampling

• If R̂ close to 1, it is still possible that chains have not
converged
• if starting points were not overdispersed
• distribution far from normal (especially if infinite variance)
• just by chance when N is finite
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Split-R̂

• BDA3: split-R̂
• Examines mixing and stationarity of chains
• To examine stationarity chains are split to two parts

• after splitting, we have M chains, each having N draws
• scalar draws θnm (n = 1, . . . ,N; m = 1, . . . ,M)
• compare means and variances of the split chains
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Rank normalized R̂

• Original R̂ requires that the target distribution has finite
mean and variance

• Rank normalization fixes this and is also more robust given
finite but high variance
• Folding improves detecting scale differences between

chains
• Paper proposes also local convergence diagnostics and

practical MCSE estimates for quantiles
• Notation updated compared to BDA3

Vehtari, Gelman, Simpson, Carpenter, Bürkner (2020).
Rank-normalization, folding, and localization: An improved R̂ for
assessing convergence of MCMC. Bayesian Analysis,
doi:10.1214/20-BA1221.
https://projecteuclid.org/euclid.ba/1593828229.
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Time series analysis

• Autocorrelation function
• describes the correlation given a certain lag
• can be used to compare efficiency of MCMC algorithms and

parameterizations
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Autocorrelation (slow mixing due to small step size)
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Autocorrelation (slow mixing due to many rejections)
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Time series analysis

• Time series analysis can be used to estimate Monte Carlo
error in case of MCMC
• For expectation θ̄

Var[θ̄] =
σ2
θ

Seff

where Seff = S/τ (=ESS),
and τ is sum of autocorrelations
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• τ describes how many dependent draws correspond to one
independent sample

• new R̂ paper S = NM (in BDA3 N = nm and neff = N/τ )
• BDA3 focuses on Seff and not the Monte Carlo error directly

new R̂ paper discusses more about MCSEs for different
quantities
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Time series analysis

• Estimation of the autocorrelation using several chains

ρ̂n = 1−
W − 1

M
∑M

m=1 ρ̂n,m

2v̂ar+

where ρ̂n,m is autocorrelation at lag n for chain m

• This combines R̂ and autocorrelation estimates
• takes into account if the chains are not mixing (the chains

have not converged)
• BDA3 has slightly different and less accurate equation. The

above equation is used in Stan 2.18+
• Compared to a method which computes the autocorrelation

from a single chain, the multi-chain estimate has smaller
variance
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Time series analysis
• Estimation of τ τ = 1 + 2

∞∑
t=1

ρ̂t

where ρ̂t is empirical autocorrelation
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• empirical autocorrelation function is noisy and thus estimate
of τ is noisy

• noise is larger for longer lags (less observations)
• less noisy estimate is obtained by truncating

τ̂ = 1 + 2
T∑

t=1

ρ̂t
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Geyer’s adaptive window estimator

• Truncation can be decided adaptively
• for stationary, irreducible, recurrent Markov chain
• let Γm = ρ2m + ρ2m+1, which is sum of two consequent

autocorrelations
• Γm is positive, decreasing and convex function of m

• Initial positive sequence estimator (Geyer’s IPSE)
• Choose the largest m so, that all values of the sequence

Γ̂1, . . . , Γ̂m are positive
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Effective sample size
Effective sample size ESS = Seff ≈ S/τ̂
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Cumulative averages

τ̂ = 1 + 2
T∑

t=1

ρ̂t

≈ 24
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Effective sample size
Effective sample size ESS = Seff ≈ S/τ̂
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Problematic distributions

• Nonlinear dependencies
• optimal proposal depends on location

• Funnels
• optimal proposal depends on location

• Multimodal
• difficult to move from one mode to another

• Long-tailed with non-finite variance and mean
• central limit theorem for expectations does not hold
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Next week: HMC, NUTS, and dynamic HMC
Effective sample size ESS = Seff ≈ S/τ̂

−2

0

2

0 250 500 750 1000
iter

va
lu

e

theta1 theta2

Trends

0.00

0.25

0.50

0.75

1.00

0 5 10 15 20
iter

va
lu

e

theta1 theta2

Autocorrelation function

−1

0

1

0 250 500 750 1000
iter

va
lu

e

theta1 theta2 95% interval for MCMC error 95% interval for independent MC

Cumulative averages

τ̂ = 1 + 2
T∑

t=1

ρ̂t

≈ 1.6

47 / 49



Further diagnostics
• Dynamic HMC/NUTS has additional diagnostics

• divergences
• tree depth exceedences
• fraction of missing information
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